Künstliche Intelligenz – ganz nah und doch so fern; Nicolas Kipp (RatePay) über die praktische Anwendung
Künstliche Intelligenz ist längst in der öffentlichen Wahrnehmung angekommen. In den Medien meist weiterhin als fernes Zukunftsszenario gesehen, ist sie in der Finanzindustrie, besonders im Zahlungsverkehr, bereits alltäglich. Grund dafür sind die starken Veränderungen in diesem Bereich. In einigen klassischen Bereichen des Bankings, etwa im Firmenkundengeschäft, setzte erst in den letzten Jahren eine zunehmende Digitalisierung ein.
von Nicolas Kipp, Director Risk Management/Data Science bei RatePay
Erfolg besteht darin, dass man genau die Fähigkeiten hat, die im Moment gefragt sind.“
Henry Ford
Momentan ist “Künstliche Intelligenz” die Fähigkeit, die gefragt und von der mehr denn je die Rede ist. Wir sehen einige Kerntrends, die den Einsatz von künstlicher Intelligenz befördern: 1. Bezahlungen laufen zunehmend unsichtbar und im Hintergrund ab: Das Bezahlen ist immer der unangenehmste Teil einer Transaktion. Händler tun alles, um dabei eine maximal angenehme User Experience mit möglichst wenig Hindernissen zu erreichen und somit die Konversion zu erhöhen. Die Erkennung und Prüfung von Kunden sollte daher zu keinem Zeitpunkt als solches wahrgenommen werden.2. Bezahlungen sind längst kanalübergreifend: Ob eine Transaktion von einem Laptop, einer Smartwatch, einem Kühlschrank oder einem Auto ausgelöst wird, darf für Finanzdienstleister kein Hindernis sein. Verschiedene Kanäle bieten nicht nur juristische Herausforderungen, sondern zeitgleich auch zahlreiche Chancen: Aus Voice Commerce beispielsweise müssen deutlich mehr Datenpunkte als zuvor verarbeitet werden.
3. Bezahlungen werden zunehmend in Echtzeit abgewickelt: Und das nicht erst mit Instant Payments, sondern bereits seit dem Aufkommen von Peer-to-Peer-Transaktionen und immer schnellerer Logistik. Hier müssen Backend-Prozesse im Payment vollautomatisiert und zunehmend in Echtzeit ausgeführt werden.
Treffen Sie Nicolas Kipp in Berlin:
Miriam Wohlfarth (RatePay, Founder & Managing Director) erläutert bei der “Digital Finance Conference” in Berlin ihren Weg “Vom Startup zum globalen Unternehmen – und wie Partnerschaften eine erfolgreiche Expansion ermöglichen”. Die Konferenz findet am 22. und 23. Mai in Berlin statt. Leser von IT Finanzmagazin erhalten 15 Prozent auf Ihre Kartenbestellung hier.
Bei diesen drei Herausforderungen ist die Nutzung von künstlicher Intelligenz eine zwingende Folge. Auch andere Entwicklungen wie etwa sinkende Margen durch steigende Anforderungen an Regulierung, mehr Wettbewerb oder einer Professionalisierung der Internetkriminalität kommen hinzu. Dementsprechend wird sie auch in allen bedeutenden internationalen Payment-Unternehmen seit Jahren eingesetzt. Wobei wissenschaftlich strenggenommen – wie in den meisten Industrien – Machine-Learning-Algorithmen genutzt werden. Die grundsätzlich schon lange bekannten statistischen Verfahren sind erst seit einigen Jahren mit den nun verfügbaren günstigen Rechenleistungen für viele Firmen zugänglich geworden.
Machine Learning kommt entlang der gesamten Wertschöpfungskette der Payment-Industrie zum Einsatz – ganz besonders aussichtsreich immer dort, wo sehr große Datenmengen ausgewertet oder manuelle Prozesse automatisiert werden müssen:
1. In Marketing und Vertrieb für zielgerichtete Kampagnen basierend auf Konto- oder Transaktionsdaten2. In der Risikoprüfung in der automatisierten Kreditvergabe, der Geldwäsche- oder Betrugsprävention
3. Im Mahnwesen/Inkasso bei der kundenindividuellen Aussteuerung von Kommunikationskanälen und -stilen zur Optimierung der Beitreibung
4. Im Kundenservice bei der automatisierten Bearbeitung von Korrespondenzen und dem Einsatz von Chatbots
5. Im Treasury bei der genaueren Prognose von Liquiditätsbedarf
6. In der internen Revision und bei externen Prüfern zum Beispiel bei der Identifikation von Unregelmäßigkeiten in der Buchhaltung
Bei RatePAY (definiert sich als Anbieter für unsichere Zahlungsarten im E-Commerce) haben wir auch seit einigen Jahren verschiedene Einsatzgebiete getestet.
Die größte Bedeutung finden AI und ML beim Herzstück unseres Unternehmens, unserem Echtzeit-Kundenscoring.”
Unsere interne Risikomanagementplattform bauen wir täglich aus und entwickeln uns kontinuierlich weiter. Dadurch haben wir in den letzten Jahren viel gelernt. Zwei Erkenntnisse sind hierbei typisch für Finanzdienstleister, die neu mit dem Bereich starten:
Erstens: Der Anfang ist einfach, die Kunst liegt im Detail. Die ersten simplen Modelle zur Betrugsprävention waren damals von zwei Data Scientists intern schnell entwickelt und mit einem Workaround auch im Livebetrieb eingesetzt. Ergebnisse wurden schnell gebracht und das MVP als erfolgreich befunden. Um von dort aber zu einem voll ausrollbaren, performanten System mit hoher Treffgenauigkeit zu kommen, dauerte es einige Zeit. Die Kunst liegt nicht in den Modellen selbst, sondern vor allem in dem Verständnis der eigenen Daten und der Einbindung in die Softwarelandschaft.
Zweitens: Es ist wichtig, sich gerade als Nicht-Experte und vor allem als Führungskraft mit Maschine Learning zu beschäftigen. Die Lösung vieler Großkonzerne, sich für viel Geld externe Lösungen einzukaufen, kommt zu kurz. Genauso wie die Möglichkeit, F&E-Abteilungen damit im hippen Großraumbüro möglichst weit weg von den Produktivsystemen experimentieren zu lassen. So werden nicht nur die wahren Potenziale von künstlicher Intelligenz ignoriert, sondern echte Gefahren geschürt. Versteht man die verwendeten Trainingsdaten nicht und wendet Modelle blind auf andere Märkte oder Produkte an, wird der Schaden je nach Einsatzgebiet schnell ausarten.
Die Erkennung und Prüfung von Kunden sollte daher zu keinem Zeitpunkt als solches wahrgenommen werden.“
Es ist also durchaus lohnenswert, sich mit dem Thema intensiver zu beschäftigen und den Austausch v.a. mit Unternehmen aus dem Paymentsektor und anderen Branchen der „early AI majority“ zu suchen. Denn dieselbe Entwicklung beginnt bereits in anderen Segmenten der Finanzindustrie.Nicolas Kipp, RatePay (aj)
Sie finden diesen Artikel im Internet auf der Website:
https://itfm.link/89263
Schreiben Sie einen Kommentar