R2D2 und C3PO lassen grüßen: Wie Machine Learning das (Online)-Kundenerlebnis verändert
Dass immer mehr Unternehmen Machine Learning nutzen, um die Customer Experience zu optimieren, ist nicht verwunderlich. Es mangelt schlicht und einfach an Alternativen. Als erste Branche überhaupt setzte man diese Technologie im E-Commerce ein, um Inhalte zu personalisieren – was dem Ziel dient, Verkäufe und Umsätze anzukurbeln. Inzwischen verwendet auch die CMS-Industrie Machine Learning, um intelligente Inhalte zu erstellen, die die Basis einer kontextualisierten User Experience (UX) bilden. Denn es ist das Kundenerlebnis, das zukünftig über den Erfolg und Misserfolg von Unternehmen entscheiden wird.
von Tjeerd Brenninkmeijer, Executive Vice President EMEA, BloomReach
Für viele Menschen ist die Vorstellung, dass Machine Learning und weitere Artifical-Intelligence-Technologien (AI) Einzug in unser Leben halten, es sogar beherrschen könnten, sehr beängstigend. Diese Angst ist allerdings unbegründet.Bei Machine Learning handelt es sich um eine einfache Datenanalyse, die man auch manuell vornehmen könnte – allerdings wesentlich langsamer.”
Unternehmen aus allen Branchen können Machine Learning individuell für völlig unterschiedliche Zwecke einsetzen. Wie Finanzdienstleister Künstliche Intelligenz in der Praxis verwenden und in ihre digitalen sowie operativen Prozesse integrieren, verdeutlicht folgendes Beispiel:
Machine Learning im Finanzsektor: der persönliche Berater
Auch im Finanzsektor bietet es sich an, Machine Learning einzusetzen. Dadurch erhalten Kunden mehr Klarheit, Transparenz und einfacheren Zugriff auf wichtige Services.
Einen Finanzplan zu erstellen, ist mit großem Aufwand verbunden. Dutzende Faktoren, die die finanziellen Entscheidungen einer Person beeinflussen, sind dabei zu berücksichtigen. Darum gleicht kein Finanzplan dem anderen. Machine Learning kann die Entscheidungen (und deren Folgen) aller Kunden einbeziehen, um zu verstehen, an welcher Stelle seines Finanzplans der einzelne Kunde sich befindet. Das verbessert die Qualität der Beratung über mögliche Folgeschritte enorm.
2. Passende Informationen liefernPerson A sucht nach ‚Wie bereitet man sich auf die Geburt eines Babys vor‘, während Person B wissen will, ‚Um wie viel der Wert einer Schuldvereinbarung in 18 Jahren steigt‘. Auch wenn sich die Suchanfragen grundsätzlich unterscheiden, kann es sein, dass beide an identischen Inhalten interessiert sind, nämlich daran, wie man ein Neugeborenes am besten finanziell absichert. Dank NLP lernt das System permanent mit den eingegebenen Suchaufträgen und ist in der Lage, Benutzern automatisch die gesuchten Informationen zur Verfügung zu stellen. Suchen die Nutzer besonders oft nach einer bestimmten Kategorie, erhalten die Website-Betreiber automatisch eine Benachrichtigung und können ggf. mehr passende Inhalte aufbereiten und veröffentlichen.
3. Bedürfnisse der Besucher verstehenAnalysiert man das Klickverhalten aller Besucher, können Unternehmen dadurch nützliche Inhalte für spezifische finanzielle Fragen selektieren. Besuchen Nutzer, die auf der Suche nach Studentendarlehen sind, anschließend Seiten, die ihnen Tipps für die Finanzierung geben? Daten über die finanzielle Historie lassen Rückschlüsse zu, an welcher Stelle des Finanzplans sich der Nutzer befindet. Finanzunternehmen können hier einhaken und automatisch Informationen für den nächsten Schritt bereitstellen.
Die Welt wird bequemer
Nur diejenigen Unternehmen, die ihre Kunden kennen und sich am besten auf sie einstellen, können am Markt konkurrenzfähig bleiben.
Machine Learning ermöglicht es, die Kundenbedürfnisse in nie vorher dagewesenem Umfang zu erkennen und zu erfüllen.”
Immer schleichender treten Machine Learning und KI in unser Leben – zwar (noch) nicht in Form von Robotern. Sie können sich auf eine intelligente Art und Weise auf unsere früheren Entscheidungen einstellen und unser Leben somit ein Stück vereinfachen. Aus diesem Grund sollten Unternehmen nicht nur darüber nachdenken, wie sie KI oder Machine Learning effektiv für sich nutzen können. Vielmehr geht es darum, durch diese Technologie eine sinnstiftende Interaktion zwischen Mensch und Maschine herzustellen, womit Unternehmen auch die Akzeptanz bei den Kunden stärken können. Möchte eine Marke ihre Kunden inspirieren, sollte sie sich in erster Linie auf deren tägliche Bedürfnisse einstellen – hilfreich ist es, den Verbrauchern einen Mehrwert zu bieten. Gleichzeitig müssen sich Kunden darauf verlassen können, dass Unternehmen mit ihren Daten sensibel umgehen. Darum sollten Kunden nach wie vor die alleinige Entscheidungsmacht darüber haben, was mit ihren Interaktionen und Daten geschieht.aj
Sie finden diesen Artikel im Internet auf der Website:
https://itfm.link/59048
Schreiben Sie einen Kommentar